A New Megastigmane Palmitate and a New Oleanane Triterpenoid from Aster yomena MAKINO

by Qinglong Jin, Hong-Guang Jin, A Ryun Kim, and Eun-Rhan Woo*

College of Pharmacy, Chosun University, 375 Seosuk-dong, Dong-gu, Gwangju 501–759, Republic of Korea (phone: +82-62-2306369; fax: +82-62-2225414; e-mail: wooer@chosun.ac.kr)

A new megastigmane palmitate, 9-oxomegastigm-5(13)-ene- 2β -palmitate (1), and a new oleanane triterpenoid, (3β)-3,23,28-trihydroxyolean-12-en-11-one (2), together with three known oleanane-type triterpenoids, β -amyrin (3), erythrodiol (4), and (3β)-olean-12-ene-3,23,28-triol (5), were isolated from the aerial parts of *Aster yomena* (Asteraceae). Their structures were identified based on 1D- and 2D-NMR analysis, including ¹H,¹H-COSY, HSQC, HMBC, and NOESY techniques.

Introduction. – Aster yomena MAKINO (Asteraceae) is a perennial herb that is distributed throughout Korea and Japan. The whole plant is used in Korean traditional medicine for the treatment of bronchial asthma, inflammation, and colds [1][2]. In our ongoing investigation on biologically active compounds from natural sources, we studied the aerial parts of *A. yomena*. As a result, a new megastigmane palmitate, 9-oxomegastigm-5(13)-ene-2 β -palmitate (1) and a new oleanane-type triterpenoid, (3 β)-3,23,28-trihydroxyolean-12-en-11-one (2), together with three known oleanane-type triterpenoids, β -amyrin (3), erythrodiol (4), and (3 β)-olean-12-ene-3,23,28-triol (5) were isolated (see *Fig. 1*). Of these compounds, the oleanane-type triterpenoids 3–5 were obtained from this plant for the first time. Here, the isolation and structure elucidation of the new compounds were reported.

Fig. 1. Structures of compounds 1-5

^{© 2012} Verlag Helvetica Chimica Acta AG, Zürich

Results and Discussion. – Compound **1** was obtained as colorless oil. The molecular formula was determined as $C_{29}H_{52}O_3$ by HR-FAB-MS ($[M + Na]^+$ peak at m/z471.3803) and ¹³C-NMR spectra. The ¹H- and ¹³C-NMR spectra, in combination with a HSQC spectrum (*Table 1*), showed signals for a COO group (δ (C) 173.4), 14 CH₂ groups (δ(H) 2.30–2.33 (m, 2 H), 1.60–1.64 (m, 2 H) 1.35–1.25 (m, 24 H); δ(C) 34.8, 29.7, 29.6, 29.5, 29.4, 29.3, 29.2, 25.1, 22.7), and a primary Me group (δ (H) 0.88 (t, J =7.0); $\delta(C)$ 14.1), indicating the presence of a palmitate group, as evidenced by the intense mass fragment-ion peak observed at m/z 255 [Me(CH₂)₁₄COO⁻] in the ESI mass spectrum. In addition, signals, which were assignable to three tertiary Me groups $(\delta(H) 2.12, 0.97, 0.85; \delta(C) 30.1, 26.4, 18.7)$, one C=O group $(\delta(C) 209.1)$, one exocyclic CH₂ group (δ (H) 4.88 and 4.57 (2 br. s; δ (C) 109.8), two CH groups (δ (H) 4.68 (dd, J = 3.9, 7.6), 1.72 (dd, J = 2.0, 11.7); δ (C) 77.7, 51.8), four CH₂ groups (δ (C) 42.7, 30.4, 28.4, 19.9), and two quaternary C-atoms (δ (C) 146.7, 39.0) evidenced the presence of a megastigmane skeleton moiety in 1 [3]. The ${}^{1}H$ -COSY spectrum showed connectivities of C(2) with C(3), C(3) with C(4), C(6) with C(7), and C(7)with C(8). In the HMBC spectrum, correlations H-C(2)/C(1'); $CH_2(3)/CH_2(4)/$ H-C(6) and C(5); CH₂(7)/CH₂(8)/Me(12)/CH₂(13) and C(6) were observed. These findings indicated that the palmitate group was at C(2). Besides, the megastigmane moiety of **1** was similar to that of 3β -O-(β -D-glucopyranosyloxy)megastigm-9-one, which was isolated from Laggera alata [4], except for the presence of an exocyclic CH_2 group (δ (H) 4.88 and 4.57 (2 br. *s*); δ (C) 109.8), and the palmitate substituent at C(2).

Table 1. ¹H- (600 MHz) and ¹³C-NMR (150 MHz) Data of Compound **1**. Recorded in CDCl₃; δ in ppm, J in Hz. Atom numbering as indicated in Fig. 1

Position	$\delta(\mathrm{H})$	$\delta(C)$
C(1)		39.0
H-C(2)	4.68 (dd, J = 3.9, 7.6)	77.7
$CH_2(3)$	1.82 - 1.84 (m), 1.57 - 1.61 (m)	28.4
$CH_2(4)$	2.26 - 2.30 (m), 1.99 - 2.03 (m)	30.4
C(5)		146.7
H–C(6)	$1.72 \ (dd, J = 2.0, 11.7)$	51.8
$CH_2(7)$	1.85 - 1.89(m), 1.76 - 1.80(m)	19.9
CH ₂ (8)	2.48 - 2.53 (m), 2.27 - 2.34 (m)	42.7
C(9)		209.1
Me(10)	2.12(s)	30.1
Me(11)	0.85(s)	18.7
Me(12)	0.97(s)	26.4
CH ₂ (13)	4.88 (br. s), 4.57 (br. s)	109.8
C(1')		173.4
$CH_{2}(2')$	$2.30-2.33 (m)^{a}$	34.8
$CH_2(3')$	1.60 - 1.64(m)	25.1
CH ₂ (4' to 13')	$1.35 - 1.25 (m, 20 \text{ H})^{a}$	29.2-29.7
CH ₂ (14')	$1.35 - 1.25 (m, 2 H)^{a}$	31.9
CH ₂ (15')	$1.35 - 1.25 (m, 2 H)^{a}$	22.7
Me(16')	0.88(t, J = 7.0)	14.1
^a) Signals overlapped.		

1456

The relative configuration of **1** was confirmed by a NOESY experiment (*Fig. 3*), and a comparison with pertinent reference values [5-7]. The configuration of the palmitate group at C(2) could be determined as β on the basis of the coupling pattern of H–C(2) (δ (H) 4.68 (dd, J = 3.9, 7.6)). In the NOESY spectrum, distinct NOE between H–C(2) and Me(12), and H–C(2) and H–C(6) indicated that all of these are located on the same side (α). On the basis of the above results, the structure of **1** is determined as 9-oxomegastigm-5(13)-ene-2 β -palmitate.

Compound **2** was obtained as amorphous powder. It gave rise to a positive *Libermann–Burchard* color reaction, indicating a triterpenoid structure. The molecular formula was determined as $C_{30}H_{48}O_4$ by HR-FAB-MS ($[M - H]^-$ peak at m/z 471.3491) and ¹³C-NMR spectra (*Table 2*). The ¹H- and ¹³C-NMR and HSQC spectra of **2** exhibited 30 C-atom resonances, six Me groups (δ (H) 1.43, 1.16, 1.13, 0.92, 0.92, 0.69; δ (C) 33.5, 24.1, 24.0, 19.3, 17.4, 12.9), one C=O group (δ (C) 202.8), one olefinic H-atom

CH ₂ (1) CH ₂ (2) H–C(3)	$\begin{array}{l} 2.70 \ (dt, J = 3.4, 13.2), \ 0.96 - 1.01 \ (m) \\ 1.68 - 1.75 \ (m), \ 1.54 - 1.60 \ (m) \\ 3.60 \ (dd, J = 5, 11) \end{array}$	40.1 27.6
CH ₂ (2) H–C(3)	1.68 - 1.75 (m), 1.54 - 1.60 (m) 3.60 (dd, J = 5, 11)	27.6
H–C(3)	3.60 (dd, J = 5, 11)	
		73.2
C(4)		43.9
H–C(5)	$1.16 - 1.18 \ (m)^{a}$	48.3
$CH_2(6)$	1.50 - 1.54(m), 1.40 - 1.48(m)	18.3
$CH_2(7)$	$1.79 - 1.84 (m)^{a}$, $1.36 - 1.41 (m)^{a}$	33.3
C(8)		45.0
H–C(9)	2.47(s)	63.2
C(10)		38.2
C(11)		202.8
H–C(12)	5.51(s)	128.8
C(13)		173.5
C(14)		46.9
CH ₂ (15)	$1.79 - 1.85 (m)^{a}$, $1.17 - 1.21 (m)^{a}$	27.0
CH ₂ (16)	1.97 - 2.02(m), 1.29 - 1.33(m)	22.7
C(17)		38.4
H–C(18)	2.22 (dd, J = 4.2, 13.7)	44.2
CH ₂ (19)	$1.79 - 1.84 \ (m)^{a}$, $1.07 - 1.12 \ (m)$	46.4
C(20)		32.1
CH ₂ (21)	$1.35 - 1.41 \ (m), \ 1.19 - 1.24 \ (m)$	35.1
CH ₂ (22)	$1.59 - 1.65 (m), 1.39 - 1.43 (m)^{a}$	31.9
CH ₂ (23)	3.52 (d, J = 11.0), 3.29 (d, J = 11.0)	66.6
Me(24)	0.69(s)	12.9
Me(25)	1.16(s)	17.4
Me(26)	1.13(s)	19.3
Me(27)	1.43(s)	24.1
CH ₂ (28)	3.38 (d, J = 11.0), 3.16 (d, J = 11.0)	69.8
Me(29)	$0.92(s)^{a}$	33.5
Me(30)	$0.92(s)^{a}$	24.0

Table 2. ¹*H*- (600 MHz) and ¹³*C*-*NMR* (150 MHz) *Data of Compound* **2**. Recorded in CD₃OD; δ in ppm, *J* in Hz.

^a) Signals overlapped.

 $(\delta(H) 5.51 (s); \delta(C) 128.8)$, two O-bearing CH₂ groups $(\delta(H) 3.38, 3.16 (2d, J = 11.0))$, 3.52, 3.29 (2d, J = 11.0); $\delta(C)$ 69.8, 66.6), as well as one O-bearing CH group ($\delta(H)$ 3.60 (dd, J = 5.0, 11.0); $\delta(C)$ 73.2). The above mentioned data and the molecular formula pointed to a triterpenoid with an olean-12-ene skeleton [7]. Furthermore, ¹Hand ¹³C-NMR, ¹H, ¹H-COSY, and HMBC data (Fig. 2) revealed that the structure of 2 was very similar to that of 3β ,28-dihydroxy-12-oleanene-11-one, which was isolated from Viburnum awabuki [8], except for the presence of an additional O-bearing CH₂ group at C(4). The signals at δ (H) 3.52, 3.29 (2d, J = 11.0), which were coupled with that at $\delta(C)$ 66.6, were assigned to the CH₂(23) moiety bearing an OH group. In the HMBC spectrum, correlations between H-C(23) and C(3)/Me(24) indicated that this OH group might be located at C(23). In addition, the OH group at C(3) could be determined to be β -oriented on the basis of the coupling pattern of H–C(3) (δ (H) 3.60 (dd, J = 5.0, 11.0) [5-7]. The relative configuration of 2 was deduced from NOESY experiments (Fig. 3). Correlations between H–C(5), tentatively assigned in an α orientation, and H-C(23), H-C(5), and H-C(9); H-C(5), and H-C(23), H-C(23), and H–C(3); H–C(9) and Me(27) indicated that they could be on the same side (α) , while correlations between Me(24) and Me(25), Me(25) and H–C(18), H–C(18) and H-C(28), and H-C(18) and Me(30) indicated that they should be on the opposite side (β). On the basis of the above results, the structure of **2** is identified as (3β)-3,23,28trihydroxyolean-12-en-11-one.

Fig. 2. Key ¹H, ¹H-COSY correlations (-) and HMBCs $(H \rightarrow C)$ of 1 and 2

Fig. 3. Key NOESY correlations of 1 and 2

Compounds 3-5 were identified as β -amyrin [9][10], erythrodiol [8][11], and (3 β)olean-12-ene-3,23,28-triol [12][13], respectively, by comparing their NMR data with those reported in the literature. These compounds were reported for the first time from *A. yomena*.

This study was supported by Research Fund from Chosun University, 2012.

Experimental Part

General. Column chromatography (CC): silica gel 60 (SiO₂; 40–63 and 63–200 μ m, Merck), or reversed-phase (RP) silica gel (LiChroprep[®] RP-18 (40–63 μ m, Merck), MCI gel CHP 20P (70–150 μ m, Mitsubishi Chemical Co.), and Sephadex LH-20 (25–100 μ m, Sigma). TLC: silica gel 60 F₂₅₄ (5715, Merck) and RP-18 F_{254s} (15389, Merck) plates, detected by spraying with 10% H₂SO₄ in H₂O and heating on a hot plate. Sample pretreatment: YMC Dispo SPE ODS (C18 1000 mg/6 ml). Semi-prep. HPLC: Waters 600 instrument; YMC-Pack ODS-A column (250 × 10 mm i.d., 5 μ m), flow rate 3.0 ml/min. Optical rotations: Autopol-IV polarimeter (Rudolph Research Flangers). FT-IR Spectra: Perkin-Elmer Spectrum 100 FT-IR spectrometer. 1D- and 2D-NMR spectra: Varian Unity Inova 500 and Unity Inova 600 spectrometer (KBSI-Gwangju center). HR-FAB-MS: JEOL JMS 700 mass spectrometer.

Plant Material. The aerial parts of *Aster yomena* MAKINO were collected from the Herbarium of the College of Pharmacy, Chosun University, Korea, in September 2003. Plants were identified by Prof. *EunRhan Woo* of College of Pharmacy, Chosun University, Korea. A voucher specimen was deposited with the Herbarium of the College of Pharmacy, Chosun University (CSU-1029–17).

Extraction and Isolation. The air-dried aerial parts of *A. yomena* (1.9 kg) were extracted with MeOH three times at r.t., and 120 g of residue were obtained. The MeOH extract was suspended in H₂O and partitioned sequentially in CH₂Cl₂ (3×41), AcOEt (3×41), and BuOH (3×41) to afford fractions soluble in CH₂Cl₂ (23.6g), AcOEt (15.3g), and BuOH (48.9g). The CH₂Cl₂ fraction (15 g) was subjected to CC (SiO₂; hexane/acetone $100:0 \rightarrow 0:100$): *Frs. D1 – D12. Fr. D3* (320 mg) was subjected to CC (SiO₂; hexane/acetone $30:1 \rightarrow 1:1$): *Frs. D31 – D33. Fr. D31* (42 mg) was again subjected to CC (*RP-C*₁₈; 90% aq. MeOH): compound **1** (1.51 mg). *Fr. D11* (2.54 g) was purified by CC (*YMC-ODS*; aq. MeOH 80% - 100%; SiO₂; CHCl₃/MeOH 30:1, 20:1): *Frs. D11-131 – D11-136. Frs. D11-133* and *D11-134* were purified by semi-prep. HPLC (80% aq. MeOH): compound **5** ($t_R 23; 6.1 \text{ mg}$) and **2** ($t_R 16; 1.5 \text{ mg}$). *Fr. D5* (800 mg) was subjected to CC (SiO₂; hexane/acetone 10:1): *compound* **3** (4.8 mg). *Fr. D9* (690 mg) was subjected to CC (SiO₂; hexane/AcOEt 5:1): *Frs. D91 – D96. Fr. D94* (92 mg) was purified by CC (*RP-C*₁₈; 90% aq. MeOH; SiO₂, hexane/AcOEt 5:1): compound **4** (5.5 mg).

9-Oxomegastigm-5(13)-ene-2 β -palmitate (=(1S,3R)-2,2-Dimethyl-4-methylidene-3-(3-oxobutyl)cyclohexyl Hexadecanoate; **1**). Colorless oil. [α]_D²⁵ = +11.54 (c = 0.07, CHCl₃). IR (KBr): 1732, 1721, 1672, 1376. ¹H- and ¹³C-NMR: see *Table 1*. HR-FAB-MS: 471.3803 ([M+Na]⁺, C₂₉H₅₂NaO⁺₃; calc. 471.3814).

 (3β) -3,23,28-*Trihydroxyolean-12-en-11-one* (**2**). White powder. $[\alpha]_{25}^{25} = +52.9 (c = 0.10, CHCl_3)$. IR (KBr): 3406, 1715, 1651. ¹H- and ¹³C-NMR: see *Table 2*. HR-FAB-MS: 471.3491 ($[M - H]^-$, $C_{30}H_{47}O_4^-$; calc. 471.3474).

β-*Amyrin* (**3**). White powder. $[\alpha]_{15}^{25} = +88.4$ (c = 0.50, CHCl₃). IR (KBr): 3409, 1645. ¹H-NMR (300 MHz, CDCl₃): 5.18 (t, J = 3.5, Me(12)); 3.21 (dd, J = 5.0, 11.0, H–C(3)); 1.13 (s, Me(27)); 1.00 (s, Me(23)); 0.97 (s, Me(26)); 0.94 (s, Me(25)); 0.87 (s, Me(29), Me(30)); 0.83 (s, Me(28)); 0.79 (s, Me(24)). ¹³C-NMR (75 MHz, CDCl₃): 145.4 (C(13)); 121.7 (C(12)); 79.2 (C(3)); 55.4 (C(5)); 47.8 (C(9)); 47.4 (C(18)); 47.0 (C(19)); 41.9 (C(14)); 40.0 (C(8)); 39.0 (C(4)); 38.8 (C(1)); 37.3 (C(22)); 37.1 C (10)); 34.9 (C(21)); 33.6 (C(29)); 32.8 (C(7)); 32.7 (C(17)); 31.3 (C(20)); 28.6 (C(28)); 28.3 (C(23)); 27.4 (C(16)); 27.1 (C(2)); 26.3 (C(15)); 26.2 (C(27)); 23.9 (C(30)); 23.7 (C(11)); 18.6 (C(6)); 17.0 (C(26)); 15.8 (C(25)); 15.7 (C(24)).

Erythrodiol (4). White powder. $[\alpha]_{12}^{25} = +77.0$ (c = 0.50, CHCl₃). IR (KBr): 3406, 1651. ¹H-NMR (500 MHz, CDCl₃): 5.19 (t, J = 3.5, H–C(12)); 3.56 (d, 11.0, 1 H of CH₂(28)); 3.22 (d, 11.0, 1 H of

CH₂(28)); 3.23 (*dd*, J = 5.0, 11.0, H-C(3)); 1.17 (*s*, Me(27)); 1.00 (*s*, Me(23)); 0.94 (*s*, Me(26)); 0.93 (*s*, Me(25)); 0.89 (*s*, Me(29)) 0.87 (*s*, Me(30)); 0.79 (*s*, Me(24)). ¹³C-NMR (125 MHz, CDCl₃): 144.3 (C(13)); 122.4 (C(12)); 79.1 (C(3)); 69.7 (C(28)); 55.2 (C(5)); 47.6 (C(9)); 46.5 (C(19)); 42.4 (C(18)); 41.8 (C(14)); 39.8 (C(8)); 38.8 (C(4)); 38.6 (C(1)); 37.0 (C(10)); 36.9 (C(17)); 34.1 (C(21)); 33.3 (C(29)); 32.6 (C(7)); 31.1 (C(22)); 31.0 (C(20)); 28.1 (C(23)); 27.3 (C(2)); 26.0 (C(27)); 25.6 (C(15)); 23.6 (C(30)); 23.6 (C(11)); 22.0 (C(16)); 18.4 (C(6)); 16.8 (C(26)); 15.6 (C(25)); 15.6 (C(24)).

(*3β*)-*Olean-12-ene-3,23,28-triol* (**5**). White powder. $[a]_D^{25} = +61.5$ (*c* = 0.60, CHCl₃). IR (KBr): 3406, 1651. ¹H-NMR (500 MHz, CD₃OD): 5.18 (*t*, *J* = 3.5, H–C(12)); 3.60 (*dd*, *J* = 5.0, 11.0, H–C(3)); 3.52 (*d*, *J* = 11.0, 1 H of CH₂(28)); 3.10 (*d*, *J* = 11.0, 1 H of CH₂(28)); 3.52 (*d*, *J* = 11.0, 1 H of CH₂(23)); 3.30 (*d*, *J* = 11.0, 1 H of CH₂(23)); 1.19 (*s*, Me(27)); 1.00 (*s*, Me(26)); 0.99 (*s*, Me(25)); 0.89 (*s*, Me(29)); 0.88 (*s*, Me(30)); 0.71 (*s*, Me(24)). ¹³C-NMR (125 MHz, CD₃OD): 145.9 (C(13)); 123.6 (C(12)); 74.0 (C(3)); 69.9 (C(28)); 67.5 (C(23)); 49.0 (C(5)); 48.8 (C(9)); 48.0 (C(19)); 44.0 (C(18)); 43.5 (C(14)); 43.1 (C(4)); 41.2 (C(8)); 39.8 (C(1)); 38.3 (C(10)); 38.0 (C(17)); 35.4 (C(21)); 33.9 (C(29)); 33.4 (C(7)); 32.5 (C(20)); 32.0 (C(22)); 26.8 (C(2)); 26.7 (C(27)); 24.8 (C(15)); 24.2 (C(30)); 23.1 (C(11)); 19.3 (C(16)); 18.4 (C(6)); 17.5 (C(25)); 16.6 (C(26)); 12.9 (C(24)).

REFERENCES

- [1] T. B. Lee, 'Illustrated Flora of Korea', Hyang-Moon Publishing, Seoul, 1993, p. 737.
- [2] D. K. Ahn, 'Illustrated Book of Korean Medicinal Herbs', Kyo-Hak Publishing, Seoul, 1998, p. 64.
- [3] Q.-P. Zhang, B.-F. Zhang, G.-X. Chou, Z.-T. Wang, Helv. Chim. Acta 2011, 94, 1130.
- [4] Q. Zheng, Z. Xu, X. Sun, W. Yao, H. Sun, Christopher H. K. Cheng, Y. Zhao, *Phytochemistry* 2003, 63, 835.
- [5] P. Liu, P. Hu, R.-X. Deng, R. Li, L. Yang, W.-P. Yin, Helv. Chim. Acta 2011, 94, 136.
- [6] L. T. K. Van, T. M. Hung, S. H. Kim, J. C. Kim, M. Na, H. J. Jung, S. J. Kwack, K. T. Kweon, J. S. Choi, H. K. Lee, K. Bae, B.-S. Min, *Helv. Chim. Acta* 2010, 93, 1803.
- [7] D.-Q. Luo, H.-Y. Deng, X.-L. Yang, B.-Z. Shi, J.-Z. Zhang, Helv. Chim. Acta 2011, 94, 1041.
- [8] M. Kagawa, H. Minami, M. Nakahara, H. Takahashi, S. Takaoka, Y. Fukuyama, *Phytochemistry* 1998, 47, 1101.
- [9] M. Shibuya, Y. Katsube, M. Otsuka, H. Zhang, P. Tansakul, T. Xiang, Y. Ebizuka, *Plant Physiol. Biochem.* 2009, 47, 26.
- [10] J. Bhattacharyya, C. B. Barros, Phytochemistry 1985, 25, 274.
- [11] P. Pant, R. P. Rastogi, Phytochemistry 1977, 16, 1787.
- [12] M. H. Abd El-Razek, Chin. Pharm. J. 2006, 58, 95.
- [13] K. Tori, S. Seo, A. Shimaoka, Y. Tomita, Tetrahedron Lett. 1974, 15 4227.

Received January 26, 2012